

Reiltys Ellan Vannin

DEPARTMENT OF LOCAL GOVERNMENT

AND THE ENVIRONMENT

Rhenynn Reiltys Ynndagh as y Chymmyltaght

RIVER QUALITY OBJECTIVES

Agreed as Government Targets by The Department of Local Government and the Environment on 4th July 2001

The Department of Local Government and the Environment providing services in a way which reflects the need to protect and enhance the environment of the Isle of Man for the benefit of all.

RIVER QUALITY OBJECTIVES

Under Section 2 (1) of The Water Pollution Act 1993 the Environment Department (Department of Local Government and the Environment) may prescribe a system of classifying rivers and use this system to establish River Quality Objectives. Section 2 (4) of the same act requires a publication of the proposals and offers invitations for comment.

The publication and consultation process was carried out during 2000 comprising a number of presentations to government departments and conservation representatives.

A document detailing proposed objectives and timescales was distributed at the presentations, in addition it was posted on the Government Laboratory internet website and comments were requested by the end of 2000. As the timescale for consultations is now over and comments have been received it is now proposed to publish the River Quality Objectives based on the comments received.

The present river quality (1995-1999), future river quality objectives and relevant comments including timescales are presented in the following list and maps. Also included are the definitions of the objectives which, with the exception of aluminium and slight changes to the class descriptions, are the same as those used in the UK Environment Agency.

The objectives are given for specific river stretches situated between discrete sampling sites. Where present quality and objectives are the same between a number of river sites the individual river stretches are combined into longer stretches.

The agreed River Quality Objectives as presented should be used as guidance for catchment management, planning development and the setting of discharge licenses under sect. 5 (1) of The Water Pollution Act 1993, and would become statutory if approved by Tynwald.

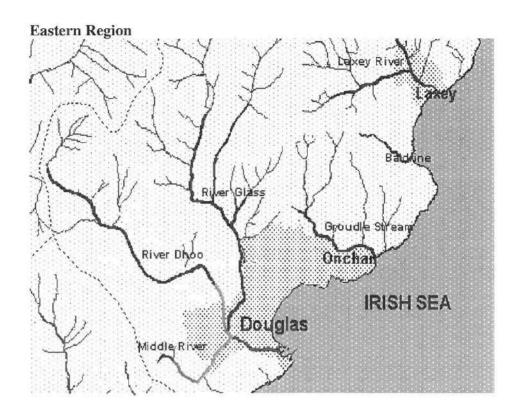
20 July 2001 Page 3 of 9

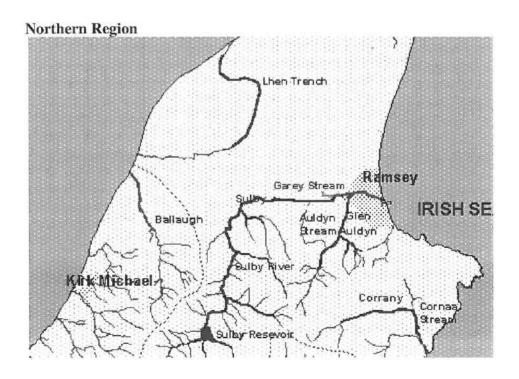
River	Stretch	1995-1999 Quality	River Quality Objective	Comments
Middle River	Douglas to Oakhill	RE2	RE2	As existing
Middle River	Oakhill to Richmond Hill	RE3	RE3	As existing
Middle River	Richmond Hill to source	RE1	RE1	As existing
River Douglas	Pulrose to Dhoo/Glass confluence	RE2	RE2	As existing
River Dhoo	Douglas to Union Mills	RE2	RE2	As existing
River Dhoo	Union Mills to Glen Vine	RE1	RE1	As existing
River Dhoo	Glen Vine to Ellerslie	RE4	RE1	End 2003 on IRIS
River Dhoo	Ellerslie to source	RE1	RE1	completion As existing
River Glass	Douglas to Tromode	RE1	RE1	As existing
River Glass	Tromode to St.Georges Bridge	RE2	RE1	On closure of animal
River Glass	St.Georges Bridge to rendering plant	RE5	RE1	rendering plant On closure of animal rendering plant
River Glass	Rendering plant to source	RE1	RE1	As existing
Baldwin River	Glass confluence to source	RE1	RE1	As existing
Groudle River	Port Groudle to Groudle Glen	RE1	RE1	As existing
Groudle River	Groudle Glen to source	RE2	RE1	End 2002
Baldrine Stream	Garwick Bay to source	RE1	RE1	As existing
Laxey River	Old Laxey to source	RE1	RE1	Set aside Zinc otherwise RE3
Glen Roy River	Laxey confluence to source	RE1	RE1	As existing

20 July 2001 Page 4 of 9

River	Stretch	1995-1999 Quality	River Quality Objective	Comments
Cornaa River	Port Cornaa to source	RE1	RE1	As existing
Auldyn Stream	Sulby confluence to source	RE1	RE1	As existing
Fern Glen Stream	n Auldyn confluence to source	RE1	RE1	As existing
Garey Stream	Sulby confluence to source	RE2	RE2	As existing
Sulby River	Garey Weir to Ellenbane	RE1	RE1	Set aside Aluminium
Sulby River	Ellenbane to Claddaghs	RE1	RE1	otherwise RE2 Set aside Aluminium
Sulby River	Claddaghs to Ballakerka	RE1	RE1	otherwise RE3 Set aside Aluminium
Sulby River	Ballakerka to Block Eary	RE1	RE1	otherwise RE3 Set aside Aluminium
Sulby River	Block Eary to Dam	RE1	RE1	otherwise RE3 Set aside Aluminium otherwise RE4
Ballamenaugh Stream	Sulby confluence to source	RE1	RE1	As existing
Ballakerka Stream	Sulby confluence to source	RE1		Set aside Aluminium otherwise RE4
Block Eary Stream	Sulby confluence to source	RE1		Set aside Aluminium otherwise RE2
Lhen Trench	Close-e-kewin to The Lhen	RE1	RE1	As existing
Ballaugh Stream	Ballaugh Bridge to source	RE1	RE1	As existing
Kirk Michael Stream	Glen Wyllin to source	RE1	REI .	As existing

River	Stretch	1995-1999 Quality	River Quality Objective	Comments
Mooar Stream	Glen Mooar to source	RE1	RE1	As existing
River Neb	Glenfaba to source	RE1	RE1	As existing
St. John's Stream	Foxdale Stream to source	RE1	RE1	As existing
Foxdale Stream	Neb confluence to St. John's	RE2	RE1	End 2003 on IRIS
Foxdale Stream	St. John's Stream to source	RE1	RE1	completion Set aside Zinc otherwise RE3
Glenmaye Stream	n Glenmaye to source	RE1	RE1	As existing
Colby River	Kentraugh to source	RE1	RE1	As existing
Ballabeg Stream	Strandhall to source	RE1	RE1	As existing
Poyllvaaish Stream	Farm to source	RE2	RE2	As existing
Silver Burn	Castletown to source	RE1	RE1	As existing
Awin Ruy	Silverburn confluence to St. Marks	RE2	RE1	End 2002
Awin Ruy	St. Marks to source	RE4	RE1	End 2002
Santon Burn	Ballawoods to source	RE1	RE1	As existing
Crogga River	Port Soderick to source	RE1	RE1	As existing

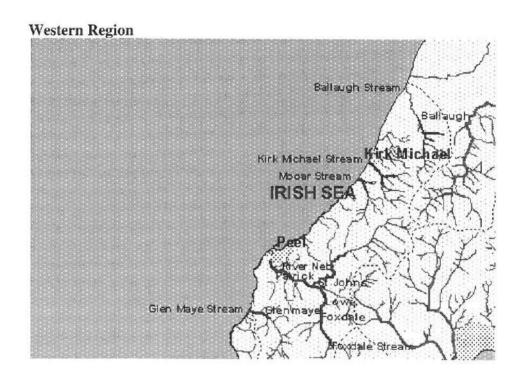

20 July 2001 Page 6 of 9

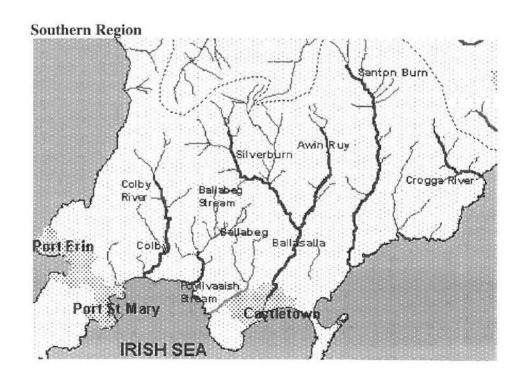

Rivers Ecosystem Use Class Definitions as used for River Quality Objectives

	т					
Total Zinc mg/l 95%ile	CaCO ₃ (95%ile) 50-100mg/l	0.3	0.3	-	1	1<
	CaCO ₃ (95%ile) 10-50mg/l	0.2	0.2	0.7	0.7	>0.7
Soluble Aluminium mg/l 95%ile	PH>6(5%ile) CaCO ₃ >20mg/l Annual average	0.025	0.1	0.5	1	
Soluble A mg/l 9	PH<6(5%ile) CaCO ₃ <20mg/l Annual average	0.005	0.025	0.1	0.5	>0.5
Dissolved Oxygen %sat'n 10%ile		80	70	09	50	20
Ammonia mgN/l 90%ile		0.25	9.0	1.3	2.5	6
BOD mg/l 90%ile		2.5	4	9	∞	15
Class Description		Water of <u>very good</u> quality suitable for high class salmonids	Water of <i>good</i> quality suitable for other salmonids	Water of <i>fair</i> quality suitable for other fish families to thrive	Water of <i>fair</i> quality suitable for other fish families to survive	Water of poor quality which is likely to limit all fish
Use		RE1	RE2	RE3	RE4	RE5

RIVER QUALITY OBJECTIVES FOLLOWING CONSULTATION, JULY 2001

RE 1 Very Good, high class Salmonids, RE 2 Good, other Salmonids, RE 3 Fair, other fish





20 July 2001 Page 8 of 9

RIVER QUALITY OBJECTIVES FOLLOWING CONSULTATION, JULY 2001

RE 1 Very Good, high class Salmonids, RE 2 Good, other Salmonids,

20 July 2001 Page 9 of 9

		1
		*