Going beyond dangerous climate change: does Paris lock out 2°C?
Professors Kevin Anderson & Alice Bows-Larkin

Twitter: @kevinclimate @aliceblarkin

School of Mechanical Aerospace & Civil Engineering
University of Manchester
February 2016, Castletown, Isle of Man
Outline

- The climate problem
- Global policy objective to combat this problem
- Current emissions and the scale of the challenge
- Contrasting 2°C and 4°C futures
- Importance of cumulative emissions & carbon budgets
- Implications of Paris Agreement
- Issues of equity, technology and economics
- Conclusions
CO₂ concentration has increased by ~44% since 1750 - 280ppmv to ~403ppmv.

The current CO₂ concentration has not been exceeded during past 800,000 yrs and...probably not during the past 20 million years.

Evidence for being man made: CO₂ from fossil fuels contains no ^14C - unlike the ‘background’ atmospheric.

2016
Temperature and CO$_2$ concentration in the atmosphere over the past 400,000 years (from the Vostok ice core)

CO$_2$ concentration, ppmv

- Year before present (present = 1950)

Temperature change from present, °C

- Year before present (present = 1950)

Sea level rise

Global average sea level change

http://www.climatechange2013.org/images/figures/WGI_AR5_FigSPM-3.jpg
New global goal

The [Paris] Agreement aims to strengthen the global response to the threat of climate change…including by:

“Holding the increase in the global average temperature to well below 2° C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5° C…”

“This Agreement will be implemented to reflect equity and the principle of common but differentiated responsibilities…”
Missing elements

Reference to fossil fuels and decarbonisation

International aviation and shipping emissions

Urgent review of pledges (won’t be reviewed until 2020)

Hidden reliance in temperature estimates of need for highly speculative negative emission technologies

• **Pledge outcome closer to 3.5° C than 2.7° C**
Influencing the future

Decisions made now impact on future climate adaptation

Higher Mitigation = Lower Adaptation

Lower Mitigation = Higher Adaptation

(There isn’t a ‘no climate change’ future)
Global impacts: 2°C

E.g.
Widespread mortality of corals
Increased risks of extreme weather events
Increased water stress & wildfire frequency
Hundreds of millions of people suffering coastal flooding
Extreme weather events/floods UK at 1 degree C
2°C is dangerous

... what about a 4°C future?

(i.e. a larger carbon budget and lower rates of mitigation)
Global impacts: 4°C

Hottest days

+8°C
+6°C
+10-12°C
Global impacts: 4°C

Droughts

1-in-10 year droughts twice as frequent
Global impacts: 4°C

Food crops

- 40% reduction in maize & wheat yields in low latitudes.
- 30% decrease in rice yields.

[Image of crops and climate change map]
There is a widespread view that 4°C is...

- Incompatible with an organised global community
- Beyond ‘adaptation’
- Devastating to eco-systems
- Highly unlikely to be stable (‘tipping points’)

... consequently ...

4°C should be avoided at ‘all’ costs
So back to avoiding 2°C – how are we doing so far?
Mitigation message changed little since first IPCC report in 1990
Annual emissions this year will be over 60% since first report in 1990

= 5 GtCO₂ (cumulated emission in human history)
Where current policy is leading…

Global emissions continuing to grow exponentially

Lower Mitigation = Higher Adaptation

Pre-Paris policies in line with 4°C-6°C by 2100

(Anderson & Bows, 2011; Betts et al., 2010; Rogelj et al., 2010; Fatih Birol, IEA Chief Economist)
Historical CO$_2$

4°C CO$_2$

2°C CO$_2$
Global ambition

Translating global targets into national energy policy involves \(\text{CO}_2 \) budgets; cumulative emissions directly relate to warming.

The carbon budget available depends on:

a) our understanding of *climate sensitivity*

b) the *probability* of exceeding \(2^\circ\text{C} \) ‘we’ are prepared to accept

A lower probability of avoiding \(2^\circ\text{C} \) gives a higher chance of \(4^\circ\text{C} \)
Long term targets irrelevant – all about carbon budgets (area under the curve)
We are rapidly ‘spending’ the carbon budget that remains to avoid 2°C goal
Mitigation policies need to be delivering change in the short-term because emissions accumulate
Energy Demand

Supply & Demand

CO$_2$ emissions (GtCO$_2$/yr)
Kevin now to take us through the more detailed implications of the Paris Agreement for wealthy regions
Paris & the 2°C framing of dangerous climate change
Conference of the Parties
Twenty-first session
Paris, 30 November to 11 December 2015

Agenda item 4(b)
Durban Platform for Enhanced Action (decision 1/CP.17)
Adoption of a protocol, another legal instrument, or an agreed outcome with legal force under the Convention applicable to all Parties

ADOPTION OF THE PARIS AGREEMENT

Proposal by the President

Draft decision -/CP.21

The Conference of the Parties,
Recalling decision 1/CP.17 on the establishment of the Ad Hoc Working Group on the Durban Platform for Enhanced Action,

Also recalling Articles 2, 3 and 4 of the Convention,

Further recalling relevant decisions of the Conference of the Parties, including decisions 1/CP.16, 2/CP.18, 1/CP.19 and 1/CP.20,
local communities, migrants, children, persons with disabilities and people in vulnerable situations and the right to development, as well as gender equality, empowerment of women and intergenerational equity,

Also acknowledging the specific needs and concerns of developing country Parties arising from the impact of the implementation of response measures and, in this regard, decisions 5/CP.7, 1/CP.10, 1/CP.16 and 8/CP.17,

Emphasizing with serious concern the urgent need to address the significant gap between the aggregate effect of Parties’ mitigation pledges in terms of global annual emissions of greenhouse gases by 2020 and aggregate emission pathways consistent with holding the increase in the global average temperature to well below 2 °C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C above pre-industrial levels,

Also emphasizing that enhanced pre-2020 ambition can lay a solid foundation for enhanced post-2020 ambition,

Stressing the urgency of accelerating the implementation of the Convention and its Kyoto Protocol in order to enhance pre-2020 ambition,

Recognizing the urgent need to enhance the provision of finance, technology and capacity-building support by developed country Parties, in a predictable manner, to enable enhanced pre-2020 action by developing country Parties,

Emphasizing the enduring benefits of ambitious and early action, including major reductions in the cost of future mitigation and adaptation efforts,

Acknowledging the need to promote universal access to sustainable energy in developing countries, in particular in Africa, through the enhanced deployment of renewable energy,

 Agreeing to uphold and promote regional and international cooperation in order to mobilize stronger and more ambitious climate action by all Parties and non-Party stakeholders, including civil society, the private sector, financial institutions, cities and other subnational authorities, local communities and indigenous peoples.
Paris Agreement – An important diplomatic triumph

... hold the increase in global average temperature to well below 2°C above pre-industrial levels and pursue efforts to limit the temperature increase to 1.5°C...

... to undertake rapid reductions in accordance with best science...

... on the basis of equity, and efforts to eradicate poverty.
Carbon dioxide from fossil fuel & cement (GtCO2yr⁻¹)

YEAR

4°C to 6°C
Carbon dioxide from fossil fuel & cement (GtCO₂yr⁻¹)

YEAR

GCP new data

4°C to 6°C

Pledges (INDCs) ~3.5°C
Carbon dioxide from fossil fuel & cement (GtCO₂yr⁻¹)

Pledges (INDCs) ~3.5°C

4°C to 6°C

2°C
Carbon dioxide from fossil fuel & cement (GtCO₂yr⁻¹)

- **Pledges (INDCs)**: ~3.5°C
- **2°C**

Deep Cuts in Energy Demand
“well below 2° C” & “pursue 1.5° C” on the basis of equity
Returning to IPCC’s Carbon budgets

5 to 8 years of current global emissions will consume all the remaining energy-carbon budget for 1.5°C

so...

it is now too late for 1.5°C
... and for 2°C?

- **66%** chance of 2°C is lost

- **50%** chance demands a *war-like* footing on mitigation - now

- **33%** chance demands mitigation far beyond anything discussed in Paris
What’s this mean for poorer & richer nations?

Method

[1] We have a global CO$_2$ budget for 33% chance of <2°C (from the IPCC)

[2] Estimate mitigation by poorer/industrialising nations (i.e. their CO$_2$ budget)

Assuming **poorer/industrialising** nations:

1. Collectively peak their emissions by 2025

2. Then rapidly increase mitigation to ~10% p.a. by 2035

3. Fully decarbonise their energy systems by 2050
... then, for 2°C, **wealthy** (e.g. IoM) nations require:

At least **10% reduction** in emissions year on year from **now**, ... equivalent to:

40% reduction by ~2018 (c.f. 1990)

70% ~2024

90% ~2030

Decarbonise **all** energy by 2035

c.f. EU’s submission to Paris 40% by 2030
How can this be reconciled with ‘official’ accounts?

“To keep ... to 2 °C ... the UK [must] cut emissions by at least 80% ...
the good news is that reductions of that size are possible without sacrificing the benefits of economic growth and rising prosperity.”

UK Committee on Climate Change
... two rabbits from the hat:

1. Negative emissions technologies (BECCS):

 Grow trees/plants

 * they absorb CO2 through photosynthesis
 * burn trees in powerstations
 * capture the CO2 from the chimney
 * ~liquefy the CO2 & pump it underground
 * store for many 1000s of years

2. Peak global emissions in the past
UK governments carbon budgets

Based on the UN Gap Report

- 163 scenarios for 50% or better chance of 2°C; of these:
 - 140 peak global CO₂ in ~2010
 - 23 peak in ~2020, all of which assume negative emissions

- ¾ of the scenarios assume both time travel & negative emissions
So Paris, some Academics & Politicians …

- rather than focus on urgent & deep mitigation now
 … with challenging political & economic repercussions

- rely on non-existent negative emission technologies
 … to suck CO_2 out of the air after 2050 *in huge quantities*

 e.g. planting 1 to 3x area of India, year after year
Returning to 2°C … is it still a viable goal?
Hypothesis: yes … just

Equity/behaviour - a small group to make radical & early reductions

Technology - demand side can deliver early & large reductions

Growth - there are alternative measures of a good life
EQUITY

50% of global CO₂ comes from 10% of the population

Top 1% of US emitters (~3.4 million people) ... have CO₂ footprints

2500x higher than bottom 1% globally (~70 million)
who are the high-emitters?

- Climate scientists
- Tynwald members?
- Anyone who annually takes a long-haul flight or two ...

2°C mitigation is principally a short-term challenge;

i.e. really now to 2025 - so is mostly about the few not the many

... it is a consumption and not a population issue!
The **brutal logic** of carbon budgets

The example of aviation:

Every tonne CO₂ from our flying *(added to our already hi emissions)*

Is a tonne of CO₂ poorer communities cannot emit

... and in the short-term,

we know access to fossil fuel energy links to their improved welfare
The **brutal logic** of carbon budgets

i.e. ... it’s **our** difficult choice between:

a) **flying** to another conference, political meeting or holiday

or

b) **their** access to **energy** for **basic needs**
TECHNOLOGY

- Efficient petrol/diesel cars
- A++ refrigerators
Private road transport (Cars)

- EU & US ~12-15% of emissions
- ~270 petrol/diesel models <100gCO2/km ... at no price premium
- 2/3 of car travel is by vehicles 8yrs old or younger
Max CO₂ Standard & existing petrol/diesel cars

- With no additional capital cost
- Reduced operating cost
- Identical infrastructure
- Same employment & companies

50% to 70% reduction in ~10yrs
Refrigeration

- A++ refrigerator uses 80% less energy than an A rated
- Phased replacement of all A-rated (& below) with A++
- CO₂ saving of \(~50\%+\) in 10 years
... and at an electricity system level

- A rated Refrigeration
- Electricity consumption
- Transmission
- Powerstation
- Fuel production, extraction & transport

10 50 54 120 133
GROWTH:

- health & life expectancy
- literacy rates & security
- fairness & fun
- time with family & friends

Growth converts the heterogeneous into the homogeneous (£, €, $)

In itself it has no meaningful value
GROWTH: a misguided proxy?

- the economist’s economy has stalled!

Faced with systemic issues

- neoclassical (‘free’ market) economics is in disarray
- incremental approaches to climate change have not delivered

We have an unprecedented opportunity to think differently
A Radical Plan for 2°C – two phases

1. Deep reductions in energy demand from now to ~2030
 ... by the high emitters

2. Massive build programme of zero carbon energy supply
 ... with 100% penetration by 2050
Thoughts on IoM & 2°C – Energy DEMAND

- Retrofit 25000 homes

 ~£0.5b over 15yrs or £33m/yr
 excellent for training & employment
 eliminate fuel poverty

- Max CO2 standard for all new cars

- Stringent efficiency standards on electrical equipment

 40% to 70% reduction in energy demand in 15 years
Thoughts on IoM & 2°C – Energy SUPPLY

- Major electrification programme (htg, transport, etc)
- Role out smart grid/intelligent metering
- 20-40 wind turbines = current IoM electricity consumption
- Solar panels on all SW roofs (~1/3 current IoM elec’)
- Indigenous biomass/biogas for intermittency/base load
- Hybrid ferry – consider wind-assist and/or biofuel
Thoughts on IoM & 2°C – Energy POLICY

- Progressive metering tariffs
- Stringent energy efficiency & emission standards
- Moratorium on airport expansion
- *Personal carbon allowance?*
“at every level the greatest obstacle to transforming the world is that we lack the clarity and imagination to conceive that it could be different.”

Robert Unger
Thank you

Kevin Anderson & Alice Bows-Larkin
University of Manchester
Feb. 2016

twitter: @KevinClimate @aliceblarkin